Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment
نویسندگان
چکیده
Methanesulfonic acid (MSA) is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content) very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea.
منابع مشابه
Facile and mild synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by methanesulfonic acid under solvent-free conditions
Methanesulfonic acid (MSA) was found to be an efficient catalyst for the synthesis of 1-substituted-1H-1,2,3,4-tetrazoles. A series of 1-substituted tetrazole compounds were synthesized from the reaction of various primary amines, sodium azide and triethyl orthoformate in the presence of catalytic amounts of MSA at room temperature. In this protocol, some of the tetrazole derivatives were synth...
متن کاملFacile and mild synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by methanesulfonic acid under solvent-free conditions
Methanesulfonic acid (MSA) was found to be an efficient catalyst for the synthesis of 1-substituted-1H-1,2,3,4-tetrazoles. A series of 1-substituted tetrazole compounds were synthesized from the reaction of various primary amines, sodium azide and triethyl orthoformate in the presence of catalytic amounts of MSA at room temperature. In this protocol, some of the tetrazole derivatives were synth...
متن کاملWater structure at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic acid revealed by phase-sensitive sum frequency spectroscopy.
Interfacial water structures of aqueous dimethyl sulfoxide (DMSO) and methanesulfonic acid (MSA) were studied by Raman, infrared, and conventional and phase-sensitive vibrational sum frequency generation (VSFG) spectroscopies. Through isotopic dilution, we probed bulk water hydrogen bonding strength using the vibrational frequency of dilute OD in H(2)O. As indicated by the frequency shift of th...
متن کاملSolvent-free direct ortho C-acylation of phenolic systems by methanesulfonic acid as catalyst
The use of methanesulfonic acid as a Brønsted acid for direct ortho-acylation of phenols and naphthols proves to be a convenient, more general and direct route to various hydroxyaryl ketones. The route is regioselective, leading to ortho C-acylated products in satisfactory to high yields in most cases. The solvent free reactions described below exhibited environmentally benign in terms of faste...
متن کاملMethanesulfonate (MSA) Catabolic Genes from Marine and Estuarine Bacteria
Quantitatively, methanesulfonate (MSA) is a very relevant compound in the global biogeochemical sulfur cycle. Its utilization by bacteria as a source of carbon and energy has been described and a specific enzyme, methanesulfonate monooxygenase (MSAMO), has been found to perform the first catabolic step of its oxidation. Other proteins seemingly involved in the import of MSA into bacterial cells...
متن کامل